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Numerous recent publicatiohdare concerned with both theo-  Chart 1
retical and synthetic aspects of three-coordinated cations of heavier
group 14 elements, for example, §Bi(toluene)]-B(CeFs)s,°
PRSIt (Xe-CB1iHe)~ 4 and MesSit+B(CeFs)s~.> We have also
synthesized and characterized a cyclotrigermenylium iBuf{
Si):Ges] ™ ¢ and a homocyclotrisilenylium ion Bu,MeSiSi)-
SiBuy]* 7 as free germyl and silyl cations. Our successful construc-
tion of these particular systems suggests that the concept of scheme 1

aromaticity and homoaromaticity is extremely useful for the Si'Bu, Bugsi, U
stabilization of the elusive group 14 element three-coordinated Gle o (NS
. T B K/ E0 Ge
cations. The concept of homoaromaticity in bishomocyclopro- /N - > —r /
penylium and trishomocyclopropenylium ions has also been ,BUSSi/Ge_Ge\Si,BUS VA N
developed and well-established in the carbon system (Chért 1). J—— s>t 1Bl
Recently, Berndt, Siebert, Schleyer, et al. have also characterized
various bis- and tris-homoaromatic boron systérHewever, their Trere s @v
counterparts, comprising the heavier group 14 elements, are missing, A
and their stability is still an open question. Here, we report the ®
unexpected formation and structure of the first heavier group 14 BusSi_ SiBuy SiBus
element cation cluster compound,'B(sSi)sGeol] **TTFPB~ Ge\'ée_/Ge
(3+-TTFPB~; TTFPB- = tetrakis(2,3,5,6-tetrafluorophenyl)borate), KI/K*-TTFPB'/ toluene I 1 C\; . TTEPE
and evidence for its trishomoaromaticity. 50°C, ane week ?§98;<(\e
3-lodo-1,2,3-tris(tritert-butylsilyl)cyclotrigermene Z) was syn- 'Buasi/Ge\G\e\/Ge\Si‘Bug
thesized by the reaction of tris(tiért-butylsilyl)cyclotrigermen- Gie Si'Bug
ylium TTFPB~ (1*-TTFPB") with excess potassium iodide in I
ether® After the solvent was changed from ether to toluene, the 3% TTFPB

reaction mixture was heated at 3G for a week. The dark-red

color of 2 slowly disappeared to produce a dark-brown viscous Via elimination of'BusSil from 2, becauséBusSil was found in

oil. Removal of potassium salts (KTTFPB- and KI) followed by the reaction mixture.

recrystallization in toluene under an inert atmosphere produced the  The interatomic distances between the “naked” germanium atoms
germanium cation cluster, 5-iodo-2,4,6,8,9,10-hexakisgtti- are almost the same (Ge®e6; 3.2642(15) A, Ge6Ge7;
butylsilyl)heptacyclo[4.4.0 B.025.0%9.04 7.8 19decagerman-7-yl-  3-2622(17) A, Ge5Ge7; 3.2542(15) A), which are much longer
ium tetrakis(2,3,5,6-tetrafluorophenyl)borag& {TTFPB), as air-  than the Ge-Ge single bond lengths 8" but are in the range of
and moisture-sensitive brown crystals in 37% yield (Schendé 1). the metallic Ge-Ge bond length found in the Zintl anion (e).*?

The structure of3*-TTFPB~ was characterized by X-ray Whatis the nature of bonding between the three “naked” Ge atoms
crystallography as well as its NMR dafsshowing the unexpected ~ that are forced to adopt inverted tetrahedral geometries? A DFT
germanium cation cluster consisting of 10 germanium atoms calculation on the model compound fg¢;" (4) with Cs,
accompanied by TTFPBas a counteranion and one toluene Symmetry at the B3LYP/6-31G(d) level represents the same cluster
molecule (Figure 1). skeleton of3" as a global minimum structure. The molecular

The distances between cationic germanium atoms (GeS, Ge,0rbitals of4* calculated at MP2/6-31G(d)//B3LYP/6-31G(d) level
Ge7) and the fluorines of TTFPBor toluene are beyond the range ~ Presented in Figure 2 show a nondegenerate HOMO and doubly
of any significant interaction (greater than 6.4 A). TherefGreis degenerate LUMOs. The picture of the HOMO for reveals the
a free germyl cation in the solid state. The;geore of3* shows presence of a bonding interaction between the three “naked”
an approximately\Cs, symmetry, which is consistent wihi, 13C, germanium atoms (Ge5, Ge6, Ge7). The positive charge is evenly
and2’Si NMR data in solutioft! Surprisingly, six germanium atoms ~ distributed over these germanium atoms. This indicates that a three-
(Ge2, Ge3, Ged, Ge8, Ge9, Gel0) caBysSi groups, and one  Center two-electron (3e2e) bond is formed by charge delocaliza-
germanium atom (Ge1) has an iodo substituent. The remaining threetion inside the conjunctive central core, giving rise to the
atoms (Ge5, Ge6, Ge7) are “naked”, which is thought to be derived trishomocyclotrigermenylium system. Indeed, the trishomoconju-

gative distance idt is 3.423 A, which is 0.353 A (ca. 9%) shorter

*To whom correspondence should be addressed. E-mail: sekiguch@ than those in the Satura}ted .SySteml‘ﬁeO (Cs). To Ch_araCtenze

staff.chem.tsukuba.ac.jp. the nature of the bonding A", a natural bond orbital (NBO)

8776 m J. AM. CHEM. SOC. 2002, 124, 8776—8777 10.1021/ja020395h CCC: $22.00 © 2002 American Chemical Society



COMMUNICATIONS

Ministry of Education, Science and Culture of Japan, and TARA
(Tsukuba Advanced Research Alliance) fund.
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